Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Solid-State Circuits ; 57(4): 1061-1074, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36186085

RESUMO

Miniaturized and wireless near-infrared (NIR) based neural recorders with optical powering and data telemetry have been introduced as a promising approach for safe long-term monitoring with the smallest physical dimension among state-of-the-art standalone recorders. However, a main challenge for the NIR based neural recording ICs is to maintain robust operation in the presence of light-induced parasitic short circuit current from junction diodes. This is especially true when the signal currents are kept small to reduce power consumption. In this work, we present a light-tolerant and low-power neural recording IC for motor prediction that can fully function in up to 300 µW/mm2 of light exposure. It achieves best-in-class power consumption of 0.57 µW at 38° C with a 4.1 NEF pseudo-resistorless amplifier, an on-chip neural feature extractor, and individual mote level gain control. Applying the 20-channel pre-recorded neural signals of a monkey, the IC predicts finger position and velocity with correlation coefficient up to 0.870 and 0.569, respectively, with individual mote level gain control enabled. In addition, wireless measurement is demonstrated through optical power and data telemetry using a custom PV/LED GaAs chip wire bonded to the proposed IC.

2.
IEEE Embed Syst Lett ; 14(1): 43-46, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35582518

RESUMO

As COVID-19 began to grip healthcare systems worldwide, worst-case models predicted huge demands for ventilators. The global community sprang to action, producing a large number of emergency "makeshift" ventilator designs. This brought about another problem: a gap between the quantity of new mechanical ventilators and the number of skilled physicians to operate them. New physicians could not complete training at the pace of ventilator production, which threatened to leave patients sitting untreated, next to unusable ventilators. To address this challenge, we developed a universal remote control system for makeshift ventilators that uses low-cost hardware add-on modules to connect to different ventilators, and a three-tier control architecture to interface the ventilators with telemedicine software. We demonstrate system integration with two representative ventilator designs, adding a remote control option that allows caregivers to quickly and easily monitor and control these ventilators remotely.

3.
ACS Photonics ; 8(5): 1430-1438, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34368396

RESUMO

Arrays of floating neural sensors with high channel count that cover an area of square centimeters and larger would be transformative for neural engineering and brain-machine interfaces. Meeting the power and wireless data communications requirements within the size constraints for each neural sensor has been elusive due to the need to incorporate sensing, computing, communications, and power functionality in a package of approximately 100 micrometers on a side. In this work, we demonstrate a near infrared optical power and data communication link for a neural recording system that satisfies size requirements to achieve dense arrays and power requirements to prevent tissue heating. The optical link is demonstrated using an integrated optoelectronic device consisting of a tandem photovoltaic cell and microscale light emitting diode. End-to-end functionality of a wireless neural link within system constraints is demonstrated using a pre-recorded neural signal between a self-powered CMOS integrated circuit and single photon avalanche photodiode.

4.
Cell Biosci ; 11(1): 133, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271993

RESUMO

BACKGROUND: Safe and rational development of nanomaterials for clinical translation requires the assessment of potential biocompatibility. Autophagy, a critical homeostatic pathway intrinsically linked to cellular health and inflammation, has been shown to be affected by nanomaterials. It is, therefore, important to be able to assess possible interactions of nanomaterials with autophagic processes. RESULTS: CEM (T cell), Raji (B lymphocyte), and THP-1 (human monocyte) cell lines were subject to treatment with rapamycin and chloroquine, known to affect the autophagic process, in order to evaluate cell line-specific responses. Flow cytometric quantification of a fluorescent autophagic vacuole stain showed that maximum observable effects (105%, 446%, and 149% of negative controls) were achieved at different exposure durations (8, 6, and 24 h for CEM, Raji, and THP-1, respectively). THP-1 was subsequently utilised as a model to assess the autophagic impact of a small library of nanomaterials. Association was observed between hydrodynamic size and autophagic impact (r2 = 0.11, p = 0.004). An ELISA for p62 confirmed the greatest impact by 10 nm silver nanoparticles, abolishing p62, with 50 nm silica and 180 nm polystyrene also lowering p62 to a significant degree (50%, 74%, and 55%, respectively, p < 0.05). CONCLUSIONS: This data further supports the potential for a variety of nanomaterials to interfere with autophagic processes which, in turn, may result in altered cellular function and viability. The association of particle size with impact on autophagy now warrants further investigation.

5.
Biomacromolecules ; 22(4): 1625-1638, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33734666

RESUMO

We describe rheological protocols to study layered and three-dimensional (3D)-printed gels. Our methods allow us to measure the properties at different depths and determine the contribution of each layer to the resulting combined properties of the gels. We show that there are differences when using different measuring systems for rheological measurement, which directly affects the resulting properties being measured. These methods allow us to measure the gel properties after printing, rather than having to rely on the assumption that there is no change in properties from a preprinted gel. We show that the rheological properties of fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) gels are heavily influenced by the printing process.


Assuntos
Hidrogéis , Impressão Tridimensional , Reologia
6.
Symp VLSI Circuits ; 20212021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35284198

RESUMO

A key challenge for near-infrared (NIR) powered neural recording ICs is to maintain robust operation in the presence of parasitic short circuit current from junction diodes when exposed to light. This is especially so when intentional currents are kept small to reduce power consumption. We present a neural recording IC that is tolerant up to 300 µW/mm2 light exposure (above tissue limit) and consumes 0.57 µW at 38°C, making it lowest power among standalone motes while incorporating on-chip feature extraction and individual gain control.

7.
IEEE J Photovolt ; 10(6): 1721-1726, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33224555

RESUMO

Dual-junction GaAs photovoltaic (PV) cells and modules at sub millimeter scale are demonstrated for efficient wireless power transfer for Internet of Things (IoT) and bio-implantable applications under low-flux illumination. The dual-junction approach meets demanding requirements for these applications by increasing the output voltage per cell with reduced area losses from isolation and interconnects. A single PV cell (150 µm × 150 µm) based on the dual-junction design demonstrates power conversion efficiency above 22% with greater than 1.2 V output voltage under low-flux 850 nm near-infrared LED illumination at 6.62 µW/mm2, which is sufficient for batteryless operation of miniaturized CMOS IC chips. The output voltage of dual-junction PV modules with 4 series-connected cells demonstrates greater than 5 V for direct battery charging while maintaining a module power conversion efficiency of more than 23%.

8.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764386

RESUMO

Investigation of the potential for nanomaterials to generate immunogenic effects is a key aspect of a robust preclinical evaluation. In combination with physicochemical characterization, such assessments also provide context for how material attributes influence biological outcomes. Furthermore, appropriate models for these assessments allow accurate in vitro to in vivo extrapolation, which is vital for the mechanistic understanding of nanomaterial action. Here we have assessed the immunogenic impact of a small panel of commercially available and in-house prepared nanomaterials on primary human peripheral blood mononuclear cells (PBMCs). A diethylaminoethyl-dextran (DEAE-dex) functionalized superparamagnetic iron oxide nanoparticle (SPION) generated detectable quantities of tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), and IL-10, the only tested material to do so. The human leukemia monocytic cell line THP-1 was used to assess the potential for the nanomaterial panel to affect cellular oxidation-reduction (REDOX) via measurement of reactive oxygen species and reduced glutathione. Negatively charged sulfonate-functionalized polystyrene nanoparticles demonstrated a size-related trend for the inhibition of caspase-1, which was not observed for amine-functionalized polystyrene of similar sizes. Silica nanoparticles (310 nm) resulted in a 93% increase in proliferation compared to the untreated control (p < 0.01). No other nanomaterial treatments resulted in significant change from that of unstimulated PBMCs. Responses to the nanomaterials in the assays described demonstrate the utility of primary cells as ex vivo models for nanomaterial biological impact.


Assuntos
Leucócitos Mononucleares/efeitos dos fármacos , Nanopartículas Metálicas/química , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Nanoestruturas/química , Caspase 1/genética , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-10/genética , Interleucina-1alfa/genética , Leucócitos Mononucleares/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Oxirredução/efeitos dos fármacos , Poliestirenos/química , Poliestirenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Fator de Necrose Tumoral alfa/genética
9.
Opt Lett ; 45(15): 4348-4351, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735295

RESUMO

We present a high-index contrast dielectric grating design for polarization-independent narrowband transmission filtering. A reduced symmetry hexagonal lattice allows coupling to symmetry-protected modes (bound states in the continuum) at normal incidence, enabling high-Q spectral peaks. The peak linewidth is tunable via degree of geometric symmetry reduction. Using diffraction efficiency calculations, we gain further insight into the design and physics of one-dimensional (1D) and two-dimensional (2D) asymmetric high contrast gratings. The grating design provides a filter response that is simultaneously polarization independent and functional at normal incidence, overcoming limitations of 1D asymmetric gratings and 2D symmetric gratings.

11.
Mol Imaging Biol ; 22(4): 904-913, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31823201

RESUMO

PURPOSE: The question of whether mesenchymal stromal cells (MSCs) home to injured kidneys remains a contested issue. To try and understand the basis for contradictory findings reported in the literature, our purpose here was to investigate whether MSC homing capacity is influenced by administration route, the type of injury model used, and/or the presence of exogenous macrophages. PROCEDURES: To assess the viability, whole-body biodistribution, and intra-renal biodistribution of MSCs, we used a multimodal imaging strategy comprising bioluminescence and magnetic resonance imaging. The effect of administration route (venous or arterial) on the ability of MSCs to home to injured renal tissue, and persist there, was assessed in a glomerular injury model (induced by the nephrotoxicant, Adriamycin) and a tubular injury model induced by ischaemia-reperfusion injury (IRI). Exogenous macrophages were used as a positive control because these cells are known to home to injured mouse kidneys. To assess whether the homing capacity of MSCs can be influenced by the presence of exogenous macrophages, we used a dual-bioluminescence strategy that allowed the whole-body biodistribution of the two cell types to be monitored simultaneously in individual animals. RESULTS: Following intravenous administration, no MSCs were detected in the kidneys, irrespective of whether the mice had been subjected to renal injury. After arterial administration via the left cardiac ventricle, MSCs transiently populated the kidneys, but no preferential homing or persistence was observed in injured renal tissue after unilateral IRI. An exception was when MSCs were co-administered with exogenous macrophages; here, we observed some homing of MSCs to the injured kidney. CONCLUSIONS: Our findings strongly suggest that MSCs do not home to injured kidneys.


Assuntos
Rim/diagnóstico por imagem , Rim/lesões , Macrófagos/patologia , Células-Tronco Mesenquimais/patologia , Imagem Multimodal , Animais , Sobrevivência Celular , Rastreamento de Células , Modelos Animais de Doenças , Feminino , Fígado/diagnóstico por imagem , Medições Luminescentes , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Células RAW 264.7 , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/patologia
12.
J Phys Chem B ; 123(29): 6303-6313, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31251624

RESUMO

This work represents a detailed investigation into the phase and morphological behavior of synergistic dual-stimuli-responsive poly(N-isopropylacrylamide) nanogels, a material that is of considerable interest as a matrix for in situ forming implants. Nanogels were synthesized with four different diameters (65, 160, 310, and 450 nm) as monodispersed particles. These different samples were then prepared and characterized as both dilute (0.1 wt %) and concentrated dispersions (2-22 wt %). In the dilute form, all of the nanogels had the same response to the triggers of the physiological temperature and ionic strength. In water, the nanogels would deswell when heated above 32 °C, while they would aggregate if heated above this temperature at the physiological ionic strength. In the concentrated form, the nanogels exhibited a wide range of morphological changes, with liquid, swollen gel, shrunken gel, and aggregate structures all possible. The occurrence of these structures was dependent on many factors such as the temperature, ionic strength of the solvent, size and ζ-potential of the nanogel, and dispersion concentration. We explored these factors in detail with techniques such as visual studies, rheology, effective volume fraction, and shape factor measurement. The different-sized nanogels displayed differing phase and morphological behavior, but generally higher concentrations of the nanogels (>7 wt %) yielded gels in water with the transitions depending on the temperature. The smallest nanogel (65 nm diameter) exhibited the most unique behavior; it did not form a swollen gel at any concentration tested. Shape factor measurement for the nanogel samples showed that two of the larger three samples (160 and 310 nm) had core-shell structures with denser core cross-linking, while the smallest nanogel sample displayed a homogeneous cross-linked structure. We hypothesize that the smallest nanogels are able to undergo more extensive interpenetration compared to the larger nanogels, which meant that the smallest nanogel was not able to form a swollen gel. In the presence of salt at 12 wt %, all of the nanogels formed aggregates when heated above 35 °C due to the screening of the electrostatic stabilization by the salt. This work revealed unique behavior of the smallest nanogel with a homogeneous cross-linked structure; its phase and morphological behavior were unlike a particle dispersion, rather these were more similar to those of a branched polymer solution. In total, these findings can be used to provide information about the design of poly(N-isopropylacrylamide) nanogel dispersions for different applications where highly specific spatiotemporal control of morphology is required, for example, in the formation of in situ forming implants or for pore blocking behavior.

13.
Nanoscale Adv ; 1(1): 367-377, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132463

RESUMO

Nanoparticle contrast agents are useful tools to label stem cells and monitor the in vivo bio-distribution of labeled cells in pre-clinical models of disease. In this context, understanding the in vivo fate of the particles after injection of labelled cells is important for their eventual clinical use as well as for the interpretation of imaging results. We examined how the formulation of superparamagnetic iron oxide nanoparticles (SPIONs) impacts the labelling efficiency, magnetic characteristics and fate of the particles by comparing individual SPIONs with polyelectrolyte multilayer capsules containing SPIONs. At low labelling concentration, encapsulated SPIONs served as an efficient labelling agent for stem cells. The bio-distribution after intra-cardiac injection of labelled cells was monitored longitudinally by MRI and as an endpoint by inductively coupled plasma-optical emission spectrometry. The results suggest that, after being released from labelled cells after cell death, both formulations of particles are initially stored in liver and spleen and are not completely cleared from these organs 2 weeks post-injection.

14.
Stem Cell Res Ther ; 9(1): 332, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486897

RESUMO

BACKGROUND: Cell-based regenerative medicine therapies are now frequently tested in clinical trials. In many conditions, cell therapies are administered systemically, but there is little understanding of their fate, and adverse events are often under-reported. Currently, it is only possible to assess safety and fate of cell therapies in preclinical studies, specifically by monitoring animals longitudinally using multi-modal imaging approaches. Here, using a suite of in vivo imaging modalities to explore the fate of a range of human and murine cells, we investigate how route of administration, cell type and host immune status affect the fate of administered cells. METHODS: We applied a unique imaging platform combining bioluminescence, optoacoustic and magnetic resonance imaging modalities to assess the safety of different human and murine cell types by following their biodistribution and persistence in mice following administration into the venous or arterial system. RESULTS: Longitudinal imaging analyses (i) suggested that the intra-arterial route may be more hazardous than intravenous administration for certain cell types, (ii) revealed that the potential of a mouse mesenchymal stem/stromal cell (MSC) line to form tumours depended on administration route and mouse strain and (iii) indicated that clinically tested human umbilical cord (hUC)-derived MSCs can transiently and unexpectedly proliferate when administered intravenously to mice. CONCLUSIONS: In order to perform an adequate safety assessment of potential cell-based therapies, a thorough understanding of cell biodistribution and fate post administration is required. The non-invasive imaging platform used here can expose not only the general organ distribution of these therapies, but also a detailed view of their presence within different organs and, importantly, tumourigenic potential. Our observation that the hUC-MSCs but not the human bone marrow (hBM)-derived MSCs persisted for a period in some animals suggests that therapies with these cells should proceed with caution.


Assuntos
Imageamento Tridimensional , Transplante de Células-Tronco Mesenquimais , Animais , Carcinogênese/patologia , Linhagem Celular , Humanos , Injeções Intravenosas , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos BALB C , Camundongos SCID , Osteossarcoma/patologia , Distribuição Tecidual , Cordão Umbilical/citologia
15.
Biomater Sci ; 6(1): 101-106, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29188240

RESUMO

Although there is extensive literature covering the biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs), the phase of the iron oxide core used is not often taken into account when cell labelling and tracking studies for regenerative medicine are considered. Here, we use a co-precipitation reaction to synthesise particles of both magnetite- (Fe3O4) and maghemite- (γ-Fe2O3) based cores and consider whether the extra synthesis step to make maghemite based particles is advantageous for cell tracking.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Meios de Contraste/química , Imageamento por Ressonância Magnética
16.
Soft Matter ; 13(45): 8426-8432, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083003

RESUMO

Hydrogels prepared from low molecular weight gelators (LMWGs) are formed as a result of hierarchical intermolecular interactions between gelators to form fibres, and then further interactions between the self-assembled fibres via physical entanglements, as well as potential branching points. These interactions can allow hydrogels to recover quickly after a high shear rate has been applied. There are currently limited design rules describing which types of morphology or rheological properties are required for a LMWG hydrogel to be used as an effective, printable gel. By preparing hydrogels with different types of fibrous network structures, we have been able to understand in more detail the morphological type which gives rise to a 3D-printable hydrogel using a range of techniques, including rheology, small angle scattering and microscopy.

17.
Cytotherapy ; 19(4): 555-569, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28214127

RESUMO

BACKGROUND AIMS: Tracking cells during regenerative cytotherapy is crucial for monitoring their safety and efficacy. Macrophages are an emerging cell-based regenerative therapy for liver disease and can be readily labeled for medical imaging. A reliable, clinically applicable cell-tracking agent would be a powerful tool to study cell biodistribution. METHODS: Using a recently described chemical design, we set out to functionalize, optimize and characterize a new set of superparamagnetic iron oxide nanoparticles (SPIONs) to efficiently label macrophages for magnetic resonance imaging-based cell tracking in vivo. RESULTS: A series of cell health and iron uptake assays determined that positively charged SPIONs (+16.8 mV) could safely label macrophages more efficiently than the formerly approved ferumoxide (-6.7 mV; Endorem) and at least 10 times more efficiently than the clinically approved SPION ferumoxytol (-24.2 mV; Rienso). An optimal labeling time of 4 h at 25 µg/mL was demonstrated to label macrophages of mouse and human origin without any adverse effects on cell viability whilst providing substantial iron uptake (>5 pg Fe/cell) that was retained for 7 days in vitro. SPION labeling caused no significant reduction in phagocytic activity and a shift toward a reversible M1-like phenotype in bone marrow-derived macrophages (BMDMs). Finally, we show that SPION-labeled BMDMs delivered via the hepatic portal vein to mice are localized in the hepatic parenchyma resulting in a 50% drop in T2* in the liver. Engraftment of exogenous cells was confirmed via immunohistochemistry up to 3 weeks posttransplantation. DISCUSSION: A positively charged dextran-coated SPION is a promising tool to noninvasively track hepatic macrophage localization for therapeutic monitoring.


Assuntos
Rastreamento de Células/métodos , Dextranos/química , Ferro/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Sobrevivência Celular , Células Cultivadas , Dextranos/farmacocinética , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacocinética , Humanos , Cirrose Hepática/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
18.
Opt Lett ; 42(3): 518-521, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146516

RESUMO

We experimentally demonstrate a long-wavelength infrared narrowband transmission filter using an asymmetric subwavelength dielectric grating. A two-step grating geometry is used to define the asymmetry, which enables resonant narrowband transmission response at normal incidence. Computational modeling is used to show that varying the grating parameter dimensions can shift the transmission peak wavelength. Silicon/air gratings are experimentally demonstrated, with the peak transmission wavelength varying between 10 and 11.3 µm.

19.
NPJ Regen Med ; 2: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302362

RESUMO

Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.

20.
Contrast Media Mol Imaging ; 11(5): 362-370, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27358113

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T2 and T2* relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Meios de Contraste/química , DEAE-Dextrano/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco/citologia , Animais , Materiais Revestidos Biocompatíveis , Meios de Contraste/farmacocinética , Ferro/análise , Ferro/farmacocinética , Magnetismo , Camundongos , Tamanho da Partícula , Polímeros , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...